Question:
(1) Solve
\(x\frac{dy}{dx}+y=0\)
(2) Solve
\(x\frac{dy}{dx}+y=x\ln x\) by using the result from (1).
Answer:
(1) The original differential equation can be expressed as
\[ x\frac{dy}{dx}+\frac{dx}{dx}y =0, \qquad \rightarrow x’y + xy’ =0 \]
Namely,
\[ \frac{d(xy)}{dx}=0 \qquad \rightarrow xy=C \quad \rightarrow \rightarrow y=\frac{C}{x} \]
(2) Use variation of constants. When \(x \ln x = 0\), \(y=\frac{C(x)}{x}\). Then, plug it in the original equation.
\[ x\frac{d}{dx}\frac{C(x)}{x}+\frac{C(x)}{x}=x \ln x \]
\[ \frac{xC'(x)-C(x)}{x^2}x+\frac{C(x)}{x}=x\ln x \]
\[ C'(x) = x \ln x \]
Integrate both sides.
\[ C(x) = \int x\ln x dx \]
\[ C(x) = \frac{x^2}{2}\ln x – \int \left(\frac{1}{x} \frac{x^2}{2}\right)dx \]
\[ C(x) = \frac{x^2}{2}\ln x – \frac{x^2}{4}+ C \]
Since \(C=xy\), we have
\[ xy = \frac{x^2}{2}\ln x – \frac{x^2}{4} + C \]
\[ y = \frac{x}{2}\ln x – \frac{x}{4} + \frac{C}{x} \]