Solve the differential equation, \(\frac{dy}{dx}+P(x)y=Q(x)\).

hirophysics.com

Question:

(1) Find the general solution of

\(\frac{dy}{dx}+P(x)y=Q(x)\), where \(P(x)\) and \(Q(x)\) are functions of \(x\).

(2) Solve the following differential equation:

\(x\frac{dy}{dx}+2y=\sin x\)

Answer:

(1) Multiply \(e^{\int P(x)dx}\) by both sides.

\[  e^{\int P(x)dx}\frac{dy}{dx}+P(x)e^{\int P(x)dx}y=e^{\int P(x)dx}Q(x)  \]

We can notice that the left hand side can be modified as follows:

\[  \frac{d}{dx}\left(e^{\int P(x)dx}y\right) = e^{\int P(x)dx}Q(x)  \]

Integrate both sides in terms of \(x\).

\[  e^{\int P(x)dx}y = \int e^{\int P(x)dx}Q(x)dx + C \]

\[  y = e^{-\int P(x)dx}\left(\int e^{\int P(x)dx}Q(x)dx + C \right)  \]

The other solution of (1) When \(Q(x) = 0\), the solution is \(y=Ce^{-\int P(x)dx}\). Therefore, when \(Q(x) \neq 0\), the constant \(C\) can be a function of \(x\) and then find the \(C(x)\). \(y=Ce^{-\int P(x)dx}\) can be plugged in the original equation:

\[  \frac{d}{dx}Ce^{-\int P(x)dx}+P(x)y = Q(x)  \]

\[  C’e^{-\int P(x)dx}-CP(x)e^{-\int P(x)dx}+P(x)y = Q(x) \]

\[  C’e^{-\int P(x)dx}-P(x)y+P(x)y=Q(x) \]

\[  C’=Q(x)e^{\int P(x)dx}  \]

\[  C(x) = \int Q(x)e^{\int P(x)dx}dx+C  \]

Since \(C(x)=e^{\int P(x)dx}y\), we have

\[  e^{\int P(x)dx}y = \int Q(x)e^{\int P(x)dx}dx+C \]

\[  y = e^{-\int P(x)dx}\left(\int Q(x)e^{\int P(x)dx}dx+C \right)  \]

(2) The given equation can be modified as

\[  \frac{dy}{dx}+\frac{2y}{x}=\frac{\sin x}{x}  \]

From the previous discussion, we can let \(P(x)=2/x\) and \(Q(x)=\sin x/x\). So plug them into the result in (1).

\[  y = e^{-\int \frac{2}{x}dx}\left(\int \frac{\sin x}{x}e^{\int \frac{2}{x}dx}dx+C \right)  \]

Think about the function \(f(x)=e^{-\int \frac{2}{x}dx}\). This becomes \(f(x)=e^{-2\ln x}\). In order to simplify it, take log of both sides.

\[  \ln f(x) = \ln e^{-2\ln x}  \]

\[  \ln f(x) = -2\ln x  \]

\[  \ln f(x) = \ln x^{-2}  \]

\[  f(x) = x^{-2}  \]

Thus, we have

\[  y = \frac{1}{x^2}\left(\int \frac{\sin x}{x}x^2 dx+C \right)  \]

For the final steps,

\[  y = \frac{1}{x^2}\left(\int x\sin x dx+C \right)  \]

\[  =  \frac{1}{x^2}\left([-x\cos x + \int\cos x dx]+C \right)  \]

\[  =  \frac{1}{x^2}\left(-x\cos x + \sin x + C \right)  \]