Evaluate
\(\iiint_D x\sqrt{1+x^2+y^2+z^2}dxdydz\)
The domain is \(D=\{(x,y,z) | x\geq 0, y\geq 0, x^2+y^2+z^2\leq 1 \}\).
Answer:
Use the polar coordinate.
\[ x = r\sin\theta \cos\phi \]
\[ y = r\sin\theta \sin\phi \]
\[ z = r\cos\theta \]
Therefore, the Jacobian becomes \(J=r^2\sin\theta\). Then, substitute them into the original integral as follows:
\[ I = \iiint_D x\sqrt{1+x^2+y^2+z^2}dxdydz \]
\[ = {\scriptstyle \iiint_D r^3\sin^2\theta \cos\phi\sqrt{1+(r\sin\theta \cos\phi)^2+(r\sin\theta \sin\phi)^2+(r\cos\theta)^2}dr d\theta d\phi } \]
\[ = {\scriptstyle \iiint_D r^3\sin^2\theta \cos\phi\sqrt{1+r^2\sin^2\theta(\cos^2\phi + \sin^2\phi)+r^2\cos^2\theta}dr d\theta d\phi } \]
\[ = \iiint_D r^3\sin^2\theta \cos\phi\sqrt{1+r^2\sin^2\theta+r^2\cos^2\theta}dr d\theta d\phi \]
\[ = \iiint_D r^3\sin^2\theta \cos\phi\sqrt{1+r^2}dr d\theta d\phi \]
\[ = \int^1_0 r^3\sqrt{1+r^2}dr \int^{\pi}_0 \sin^2\theta d\theta \int^{\pi/2}_0\cos\phi d\phi \]
The domain, \(D\), explains that \(0\leq r \leq 1\), \(0\leq \theta \leq \pi\), and \(0\leq \phi \leq \pi/2\). Let us calculate each part of the integral.
\[ I_1 = \int^1_0 r^3\sqrt{1+r^2} dr \]
\[ = \int^2_1 (t-1)\sqrt{t} dt \quad {\scriptstyle (\mathtt{Replaced \ with} \ 1+r^2=t.)} \]
\[ = \frac{1}{2}\left[\frac{2}{5}t^{5/2}-\frac{2}{3}t^{3/2}\right]^2_1 \]
\[ = \frac{2}{15}(\sqrt{2}+1) \]
\[ I_2 = \int^{\pi}_0 \sin^2\theta d\theta \]
\[ = \int^{\pi}_0 \frac{1-\cos 2\theta}{2} d\theta \]
\[ = \int^{\pi}_0 \frac{1}{2}-\frac{\cos 2\theta}{2} d\theta \]
\[ = \left[ \frac{\theta}{2}-\frac{\sin 2\theta}{4} \right]^{\pi}_0 \]
\[ = \frac{\pi}{2} \]
\[ I_3 = \int^{\pi/2}_0 \cos\phi d\phi \]
\[ = \left[ \sin\phi \right]^{\pi/2}_0 \]
\[ = 1 \]
Therefore,
\[ I = I_1\cdot I_2\cdot I_3 = \frac{2}{15}(\sqrt{2}+1)\cdot \frac{\pi}{2} \cdot 1 = \frac{\pi}{15}(\sqrt{2}+1) \]