One dimensional problem on quantum mechanics: Infinite square well potential

hirophysics.com

Question:

There is an infinite potential well of width \(a\) for a quantum system. Find the ground state energy.

Answer:

The potential energies for each domain are

\[  V(x) = \infty \quad  (x \leq 0, \ x \geq a)  \]

\[  V(x) = 0 \quad  (0 < x <  a)  \]

For the region of \(V(x) = \infty\), there is no particle since it gives zero for the wave function. For inside the well, the hamiltonian is

\[  H = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}  \]

Therefore the Schroedinger equation becomes

\[  -\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi   \]

\[  \frac{d^2\psi}{dx^2} + \frac{2mE}{\hbar^2}\psi = 0  \]

\[  \frac{d^2\psi}{dx^2} + k^2\psi = 0  \]

where \(k^2=\frac{2mE}{\hbar^2}\).

This differential equation has the general solution as follows:

\[  \psi(x) = A\sin kx + B\cos kx  \]

The wave function is a continuous function; and at both edges it must be zero due to the infinite potential.

\[  \psi(0) = \psi(a) = 0   \]

This indicates that the wave function must be odd because \(0<x<a\). Thus, from \(\psi(x) = A\sin kx + B\cos kx\), only the sine function survives, so the wave function should be \(\psi(x)=A\sin kx\). From the above boundary condition \( \psi(0) = \psi(a) = 0 \),

\[  A\sin ka = 0  \]

This gives

\[  k_n a = n\pi, \quad n=0,1,2,…  \]

Since \(k=\frac{n\pi}{a}\), the wave function becomes

\[  \psi(x) = A\sin \left(\frac{n\pi x}{a}\right)  \]

Let us now normalize this function.

\[  A^2\int^a_0 \sin^2\left(\frac{n\pi x}{a}\right) dx = 1  \]

Put \(\theta=\frac{n\pi x}{a}\), so \(dx=\frac{a}{n\pi}d\theta\) and \(0<\theta<n\pi\).

\[  \frac{A^2a}{n\pi}\int^{n\pi}_0 \sin^2\theta d\theta = 1  \]

\[  \frac{A^2a}{n\pi}\left[\frac{\theta}{2}-\frac{\sin 2\theta}{4}\right]^{n\pi}_0 = 1   \]

\[  \frac{A^2a}{n\pi}\frac{n\pi}{2} = 1   \]

\[  A = \sqrt{\frac{2}{a}}  \]

Hence, the wave function is completed as

\[  \psi(x) = \sqrt{\frac{2}{a}}\sin\left(\frac{n\pi x}{a}\right)  \]

Now, we obtain the energy eigen values. From equations \(k^2=\frac{2mE}{\hbar^2}\) and \(k=\frac{n\pi}{a}\), we have

\[  E_n = \frac{\hbar^2 k^2_n}{2m} = \frac{\hbar^2 n^2 \pi^2}{2ma^2}  \]

\(n=0\) corresponds to \(E=0\), so the ground state energy is when \(n=1\).