Question:
\(x\) and \(y\) are given as follows:
\[ x = e^t \cos t \]
\[ y = e^t \sin t \]
Express \(\frac{d^2y}{dx^2}\) in terms of \(t\).
Answer:
Take the derivative with respect to \(t\).
\[ \frac{dx}{dt} = e^t (\cos t -\sin t) \]
\[ \frac{dy}{dt} = e^t (\cos t +\sin t) \]
Therefore,
\[ \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} \]
\[ = \frac{\cos t + \sin t}{\cos t – \sin t}\]
Now, \(\frac{d^2y}{dx^2}\) is a little tricky.
\[ \frac{d^2y}{dx^2} = \frac{d}{dx}\frac{dy}{dx} = \frac{d}{dt}\frac{dy}{dx}\frac{dt}{dx} \]
Therefore,
\[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{\cos t + \sin t}{\cos t – \sin t}\right)\frac{1}{e^t (\cos t -\sin t)} \]
\[ = \frac{(-\sin t + \cos t)(\cos t – \sin t)-(\cos t + \sin t)(-\sin t – \cos t)}{e^t(\cos t – \sin t)^3} \]
\[ = \frac{\cos^2 t – 2\cos t\sin t + \sin^2 t + \cos^2 t + 2\cos t\sin t + \sin^2 t}{e^t(\cos t – \sin t)^3} \]
\[ = \frac{2(\cos^2 t + \sin^2 t)}{e^t(\cos t – \sin t)^3} \]
\[ = \frac{2}{e^t(\cos t – \sin t)^3} \]