Question:
Define \(z=x+iy\). Prove the following equation
\[ \frac{\sin 2x + i\sinh 2y}{\cos 2x + \cosh 2y} = \tan z \]
Answer:
We should use the following relationships:
\[ \sinh x = -i\sin ix \]
\[ \cosh x = \cos ix \]
\[ \sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2} \]
\[ \cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} \]
Thus,
\[ \frac{\sin 2x + i\sinh 2y}{\cos 2x + \cosh 2y} = \frac{\sin 2x + i(-i\sin i2y)}{\cos 2x + \cos i2y} \]
\[ = \frac{\sin 2x + \sin i2y}{\cos 2x + \cos i2y} \]
\[ = \frac{2\sin\frac{2x+i2y}{2}\cos\frac{2x-i2y}{2}}{2\cos\frac{2x+i2y}{2}\cos\frac{2x-i2y}{2}} \]
\[ = \frac{2\sin(x+iy)\cos(x-iy)}{2\cos(x+iy)\cos(x-iy)} \]
\[ = \frac{\sin(x+iy)}{\cos(x+iy)} \]
\[ = \tan(x+iy) = \tan z \]
Now, it’s proven!