Question:
Knowing that \(\log_{10}2=0.3010\) and \(\log_{10}3=0.4771\),
(1) find the number of figures of \(6^{50}\).
(2) find at which decimal place appears to be the first non-zero of \(\left(\frac{1}{2}\right)^{300}\).
Answer:
(1) First, take the log of \(6^{50}\).
\[ \log_{10}6^{50} = 50\log_{10}(2\times 3) \]
\[ = 50(\log_{10}2 + \log_{10}3) \]
\[ = 50(0.3010 + 0.4771) \]
\[ = 38.905 \]
Thus, we can state
\[ 38<\log_{10}6^{50}<39 \]
Namely,
\[ 10^{38}<6^{50}<10^{39} \]
\(6^{50}\) has 39 figures.
(2) Take the log of the given number.
\[ \log_{10}\left(\frac{1}{2}\right)^{300} = 300\log_{10}\frac{1}{2} \]
\[ = 300(\log_{10}1 – \log_{10}2) \]
\[ = 300(0-\log_{10}2) \]
\[ = -90.3 \]
Then, we have
\[ -91<\log_{10}\left(\frac{1}{2}\right)^{300}< -90 \]
\[ 10^{-91} < \left(\frac{1}{2}\right)^{300} < 10^{-90} \]
\(\left(\frac{1}{2}\right)^{300}\) has non-zero number at the 91-st decimal place.