Question:
Find the value of integral
\[ \int^{\infty}_{-\infty}\frac{dx}{x^6+1} \]
Answer:
The integrand is even function, so we can reduce the above integral into
\[ \int^{\infty}_{-\infty}\frac{dx}{x^6+1} = 2\int^{\infty}_{0}\frac{dx}{x^6+1} \]
Then, replace \(x\) with \(t^{\frac{1}{6}}\). Thus, we have \(dx=\frac{1}{6}t^{-\frac{5}{6}}dt\). Thus,
\[ \int^{\infty}_{0}\frac{dx}{x^6+1} = \frac{1}{6}\int^{\infty}_{0}\frac{t^{-\frac{5}{6}}}{t+1}dt \]
Remember that the Beta function is defined as follows:
\[ B(p,q) = \int^{\infty}_{0}\frac{x^{p-1}}{(1+x)^{p+q}}dx \]
\[ B(p,q)=B(q,p)=\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \]
So the above expression gives you
\[ \frac{1}{6}\int^{\infty}_{0}\frac{t^{-\frac{5}{6}}}{t+1}dt = \frac{1}{6}B(\frac{1}{6},\frac{5}{6}) \]
\[ = \frac{1}{6}\frac{\Gamma(\frac{1}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{1}{6}+\frac{5}{6})} \]
\[ = \frac{1}{6}\Gamma(\frac{1}{6})\Gamma(\frac{5}{6}) \]
where we use \(\Gamma(1)=1\).
Do you remember the following formula?
\[ \Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin\pi s} \]
The parameter satisfies \(0<s<1\).
Thus,
\[ \frac{1}{6}\Gamma(\frac{1}{6})\Gamma(\frac{5}{6}) = \frac{1}{6}\frac{\pi}{\sin(\pi/6)} = \frac{\pi}{3} \]
Hence,
\[ \int^{\infty}_{-\infty}\frac{dx}{x^6+1} = \frac{2\pi}{3}\]